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The theory of dielectric polarization in random media is systematically formu- 
lated in terms of response kernels. The primary response kernel K(12) governs 
the mean dielectric response at the point r~ to the external electric field at the 
point r 2 in an infinite system. The inverse of K(12) is denoted by L(12); it is 
simpler and more fundamental than K(12) itself. Rigorous expressions are 
obtained for the effective dielectric constant e* in terms o f / (12)  and K(12). The 
latter expression involves the Onsager-Kirkwood function ( e * - % ) ( 2 e *  + %) 
/E0e* (where % is an arbitrary reference value), and appears to be new to the 
random medium context. A wide variety of series representations for e* are 
generated by means of general perturbation expansions for K(12) and / (12) .  A 
discussion is given of certain pitfalls in the theory, most of which are related to 
the fact that the response kernels are long ranged. It is shown how the dielectric 
behavior of nonpolar molecular fluids may be treated as a special case of the 
general theory. The present results for e* apply equally well to other effective 
phenomenological coefficients of the same generic type, such as thermal and 
electrical conductivity, magnetic susceptibility, and diffusion coefficients. 

KEY WORDS: Dielectrics; random media; nonpolar fluids; diffusion; con- 
duction; composites. 

1. INTRODUCTION 

The purpose of this paper is to provide a unified and systematic develop- 
ment of certain aspects of the theory of static dielectric polarization in 
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random media. With appropriate reinterpretation of symbols, the develop- 
ment also applies to other phenomena governed by the same differential 
equations, such as thermal and electrical conduction, diffusion, and magne- 
tization. 

In contrast to the statistical-mechanical theory of molecular dielectrics, 
the statistical theory of dielectric behavior in random continuous media is 
of relatively recent inception. It appears to have originated with the elegant 
pioneering work of Brown (1,2) on random two-phase composites. This work 
was extended to more general random media by Finkel'berg. (3) There has 
subsequently been a steadily increasing interest in the dielectric (and 
analogous) properties of random media. (4-17) A substantial part of this 
work has been restricted to the important special case of two-phase com- 
posites or particulate suspensions. Within this restriction, considerable 
emphasis has been placed on expansions in the number density of particles 
or inclusions. (7'9-11'15'16) Much effort has also been devoted to establishing 
rigorous upper and lower bounds on the effective dielectric constant e* 
(and analogous parameters) for both composites and more general random 
media. (2,5,s'll'lv) These aspects will not be considered in the present paper. 
Our attention is primarily focused on the relation of e* to the statistical 
correlations that exist in the random medium. The nature and constitution 
of the random medium are left arbitrary; we simply suppose that the 
medium exhibits a fluctuating dielectric constant e(1) which is a random 
function of position with definite but unspecified statistical characteristics. 
The results obtained are thus possessed of considerable generality, and may 
be used as convenient starting points for the treatment of particular cases 
such as composites or suspensions. 

For simplicity, and because it is the most common situation of interest, 
the random medium is taken to be statistically homogeneous and isotropic. 
However, the methods employed are not restricted to this case, and the 
development readily generalizes to anisotropic and/or  inhomogeneous me- 
dia at the cost of some additional complexity. 

The theory leads to a variety of different series expansions for e*. The 
successive terms in these series contain successively higher-order spatial 
correlation functions involving E(1). These series expressions for c* are 
considerably more general and flexible than those obtained in earlier work. 
They are formally rigorous, but their convergence properties are as yet 
unknown. It is conceivable that in some cases the series may be merely 
asymptotic. 

Our development is based on the systematic use of response kernels, 
and in this respect it is rather closely analogous to our work on dielectric 
polarization in fluids composed of polar molecules. (18'19) Other aspects of 
the development, particularly those concerned with series expansions of the 
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response kernels, have no analogs in the case of polar molecules but are 
related to the theory of nonpolar molecular dielectrics. Within the random 
medium context, the earlier work to which our approach is closest in spirit 
is that of Brown (1'2~ and Finkel'berg. (3) 

The basic response kernel of the theory is K(12), which determines the 
mean dielectric response at the point r 1 (defined in terms of a natural 
generalization of the polarization) to the external electric field at the point 
r 2 in an infinite system. The inverse of K(12), denoted by k(12), plays a 
central role in the theory, as it is a simpler and more fundamental quantity 
than K(12) itself. (18~ Rigorous expressions are obtained for the effective 
dielectric constant E* in terms of K(12) and I_(12). These expressions are 
formally identical to the corresponding expressions for the dielectric con- 
stant of molecular fluids, (1s'2~ except that they involve an arbitrary 
reference dielectric constant % which is ordinarily not introduced in the 
molecular case. The expression for E* in terms of 1_(12) is the general result 
corresponding to the series expansion of Brown. (1'2~ The expression for ~* 
in terms of K(12) involves the Onsager-Kirkwood function (e* - c0)(2E* + 
c0)/e0~*, and appears to be new to the random medium context. 

The response kernels K(12) and 1(12) are long ranged in character; 
they decay to zero like Ir, - r21-3 as ]r 1 - r2 l -~  ~ .  This long-range behavior 
gives rise to certain subtleties and hazards in the theory, and it has not 
always been properly dealt with in earlier work. The dangers are particu- 
larly acute in contexts such as thermal conduction, where everything seems 
superficially local and one does not ordinarily think of the underlying 
physics in terms of long-range effects. We have therefore thought it 
worthwhile to devote a separate section to a discussion of some of the 
associated pitfalls. 

In the literature on random media, it has become customary to refer 
collectively to the difficulties associated with these long-range effects as the 
"conditional convergence" problem. (1~ This problem typically 
manifests itself as a dependence of certain integrals in a finite system on the 
shape of the sample volume. This shape dependence persists even in the 
infinite-volume limit, so that in such formulations the case of an infinite 
system becomes ambiguous. Various methods are now known for dealing 
with these complications, (t~ but on the whole they seem needlessly 
cumbersome. In the present development, such difficulties are entirely 
circumvented by carefully accounting for all long-range effects from the 
outset. We are thereby able to formulate the infinite-system problem in a 
manifestly unambiguous way, so that conditionally convergent expressions 
never arise in the first place and hence need not be dealt with. The 
procedural details of our development may therefore be of some interest 
apart from the results to which they lead here, for they seem likely to be 
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equally applicable and advantageous in other similiar problems, such as the 
determination of effective elastic constants and viscosities of solid and 
liquid suspensions. 

The response kernels K(12) and L(12) are next expressed as infinite 
series by means of general perturbation expansions. The terms in these 
series involve spatial correlation functions of various rational functions of 
E(1). A wide variety of different series representations may be generated as 
special cases of the general expansions. In this way each of the two rigorous 
expressions for E* leads to two different two-parameter families of series 
expansions for c*. One of the two parameters is the reference dielectric 
constant c o mentioned above; the other parameter is related to the ambigu- 
ity in the dipole tensor. (25) These parameters lend a great deal of flexibility 
to the results, and it is hoped that it may prove possible to choose them in 
such a way as to accelerate convergence of the series. 

The series expansions of the present work are weak-coupling expan- 
sions in the sense of Felderhof, Ford, and Cohen. (15) These authors 
considered the case of a random suspension, for which strong-coupling 
cluster and density expansions can also be developed. It is not immediately 
obvious how to formulate analogous strong-coupling expansions for more 
general random media, where there are no well-defined inclusions and 
hence no clusters or number density thereof. It should be noted, however, 
that even in situations where both types of expansions are available, either 
can converge faster than the other depending on the parameter regime of 
interest. (For example, in a nonpolar molecular fluid the weak-coupling 
expansion in powers of polarizability may be expected to converge rapidly 
even at high density, (26) where a density expansion would converge very 
slowly if at all.) Thus, although the terminology might suggest otherwise, 
the two types of expansion are actually complementary. 

The question of whether an effective dielectric constant e* in fact 
exists is of interest, just as is the analogous question for molecular me- 
dia. (18'26) This question will not be pursued here. Its investigation would 
require consideration of a finite sample of arbitrary shape, and would 
proceed along much the same outline as in the molecular problem. Here we 
forgo such an investigation in favor of the greater flexibility in the expres- 
sions for c* that an infinite sample affords. We merely remark that it is 
clear in a general way that the existence of c* will depend essentially on the 
spatial correlations in c(1) being short ranged in character. (15'26~ 

Finally, we note that the dielectric constant of a nonpolar molecular 
fluid may be treated as a special case of the present development. This 
specialization is briefly outlined, both as an illustrative application of the 
general theory and because the nonpolar fluid is of interest in its own right. 
The flexibility in our expressions for c* fortunately survives the specializa- 
tion, and one thereby obtains a somewhat more general class of expressions 
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for the dielectric constant of a nonpolar fluid than have been presented 
previously. These expressions include as special cases the familiar Kirk- 
wood-Yvon expansion in powers of the molecular polarizability, as well as 
expansions in density fluctuations of the type considered by Bedeaux and 
Mazur (27) and by Felderhof. (28) 

2. DIPOLE TENSORS 

The dipole tensor T(r) = V V Irl - ~ (where r is the position vector) plays 
an important role in dielectric theory. As is well known, however, T(r) is 
not well defined as a factor in an integrand because of the type of 
singularity it exhibits at r = 0. (25,29) This circumstance makes it possible to 
define a family of dipole tensors which differ only in their behavior at 
r - - 0 .  The basic member of this family is the dipole tensor with an 
infinitesimal spherical cutoff, 

To(r ) : H ( I r  I - o ) V V l r l - '  ( l )  

where H(x) is unity for x >/0 and zero otherwise, and it is understood that 
the limit o ~ 0 is ultimately to be taken. The use of T0(r ) for T(r) in an 
integrand is the three-dimensional analog of taking the Cauchy principal 
value of the integral. The remainder of the family is defined by 

To(r  ) = To(r ) - (4r (2) 

where 6(r) is the Dirac delta function and U is the unit dyadic. 
For  values of 0 in the range - 2  ~< 0 < 1, T0(r ) can be interpreted in 

terms of an excluded spheroidal cavity at r - - 0  whose ellipticity is deter- 
mined by 0. (3o) However, such an interpretation plays no role in our 
development, and it is preferable simply to define T0(r ) by Eq. (2). The 
value of 0 is then unrestricted. 

The following basic relation is frequently useful. If G(r) is an irrota- 
tional vector field (i.e., V • G -- 0) which vanishes at infinity, then 

fd(2) T~(12) �9 G(2)  = - 47rG(1) (3) 

where the integration extends over all space, and we have adopted the usual 
shorthand convention of representing r k simply by (k). [It is further 
understood that in a function having only a single r argument, (jk) 
represents ( r j  - -  rk). ] Equation (3) is easily verified by using the relations (25) 
V-Tl(r  ) = -47rVS(r)  and V •  ) = 0 to show that both sides have the 
same divergence and curl. Since T~(r) is itself irrotational, the well-known 
relation 

fa(3) T , ( 1 3 ) .  T , (32)  = - 4~rT~(12) (4) 

is seen to be a special case of Eq. (3). 
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The inverse of To(r ) is denoted by Ro(r ), and is defined by 

fd(3) To(13 ) �9 Ro(32 ) = 8(12)U (5) 

Using Eq. (4), one readily verifies that 

1 
R~ = - (  4-~ )2 (0 - 1)(0 + 2) T - l - ~  (6) 

Notice that the inverse does not exist for O = - 2  or O = 1; Tl(r ) and T 2(r ) 
are singuiar. 

3, THE RESPONSE KERNELS 

We consider an infinite medium whose dielectric constant is a random 
function of position c(1). The function e(1) is taken to be statistically 
homogeneous and isotropic. The medium is subjected to an external electric 
field E0(1 ) which is assumed to vary slowly with position on the scale of the 
random inhomogeneities, and which vanishes at infinity. The latter condi- 
tion eliminates certain ambiguities that would otherwise arise, as will be 
discussed in Section 5. This condition is most easily satisfied by requiring 
the sources of E0(1 ) to be confined to a finite region inside the medium. To 
prevent this from violating the assumed statistical homogeneity and isot- 
ropy, it is necessary to imagine that the sources are ethereal; they coexist 
with the medium without displacing it. This is an admittedly artificial but 
perfectly well-defined situation, to which all the usual relations of electro- 
statics may be applied. 

In a particular realization of the random medium, the total electric 
field E(1) is determined by 

V.(eE) = V .E  0 (7) 

V • E = 0 (8) 

Let c o be an arbitrary reference value for the dielectric constant, which can 
be chosen at our convenience, and define d(1) by 

c(1) = c o + d(1) (9) 

Equation (7) can then be rewritten in the form 

V . ( E -  1% E0 ) = _ leo V . ( ( E )  (10) 

Furthermore, since V • E o = 0 we have that 

V •  (11) 
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We emphasize that e o need not be a physically realizable dielectric constant. 
The value of e o is unrestricted; it can even be negative. 

Equations (10) and (11) are equivalent to the integral equation 

E(1)= 1 E0(1)+ 1 ( 
Co ~ J ( 2 )  Tl(12) �9 [ ( (2)E(2)]  (12) 

It is convenient to define a quantity F(1) by 

d ( 1 )  ~ ( 1 )  - e o 
F(1) = ~ E(1) - ~ E(1) (13) 

When c o = 1, F(1) simply reduces to the polarization (dipole moment per 
unit volume) P(1). For arbitrary Co, F(1) still plays a role analogous to the 
polarization. In particular, Eqs. (12) and (13) combine to give the electric 
field produced by a given F(1), 

E(1) = 1 Eo(1 ) + f d ( 2 )  T~(12) �9 F(2) (14) 
c o 

The relation of F(1) to Eo(1) is obtained by eliminating the remaining E(1) 
in Eq. (14) by means of Eq, (13). This gives 

fa(2) x(12) �9 v(2) = • E0(1 ) (15) 
Co 

where 

4~zc o 
X(12) = c - ~  6(12)U - 1,(12) (16) 

The inverse of A(12) is denoted by 1r so that Eq. (15) can be inverted to 
yield 

r(1) = _1 f d ( 2 )  tr �9 E0(2 ) (17) 
e0 

The above relations apply in any particular realization of the random 
medium. We now consider the average behavior. The appropriately 
weighted ensemble average over all possible realizations [i.e., all possible 
functions c(1)] will be denoted by angular brackets < �9 . �9 >. The average of 
Eq. (14) is then 

<S(1)> = 1 E0(1 ) + fa(2)T,(12) .  <V(2)> (18) 

and the average of Eq. (17) is 

1 f d ( 2 )  K(12) �9 E0(2 ) <r(1)> = Co (19) 

where K(12) = <~(12)>. The inverse of K(12) is denoted by k(12), so that 
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Eq. (19) can be inverted to yield 

f d ( 2 )  L(12)- (V(2)) = 1 E0(1 ) (20) 

The relation of (F(1)) to (E(1)) is now obtained by combining Eqs. (18) 
and (20), 

(E(1))  = fd(2) [1_(12) + Tl(12)] .  (F(2))  (21) 

The kernels ~(12) and )t(12) are the random counterparts of the 
kernels K(12) and L(12) that characterize the average response behavior. 
The average and random response kernels are connected by the relation 
K(12) = (~(12)). We note that L(12)v ~ (2k(12)), because (K(13).)~(32)) 
=/= (~(13) ) .  (2,(32)). We also note that an explicit expression for )~(12) in 
terms of c(1) is provided by Eq. (16). In contrast, an explicit expression for 
K(12) is not available; if it were, the theory would be largely trivial. The 
main complication in the theory is that the random kernel whose average is 
required is not the simple known kernel 1~(12), but rather the more compli- 
cated kernel K(12) which cannot be expressed in closed form. This is why 
perturbation expansions are necessary; they enable one to express x(12) in 
terms of c(1) as an infinite series so that ~ ( 1 2 ) )  can then be evaluated. 

Just as /k(12) is simpler in structure than K(12), so L(12) is a simpler 
and more fundamental quantity than K(12). In particular, /(12) has a 
universal asymptotic form: it becomes asymptotic to -T l (12  ) [or, if one 
prefers, the negative of any other T0(12)] at long range (see Appendix). This 
simple asymptotic behavior is analogous to that of the direct correlation 
function in a molecular fluid, which also may be interpreted in terms of an 
inverse response kernel. (3~) (The universal asymptotic form of the direct 
correlation function is simply the negative of the intermolecular pair 
potential divided by kT.) We remark in passing that the simplicity of 1(12) 
relative to K(12) is even more pronounced in a finite system, in which/ (12)  
remains asymptotic to -T~(12) at long range (except in a thin surface 
layer), whereas K(12) acquires a complicated shape-dependent behavior. 
However, we shall not consider finite-system effects here. 

We now proceed to relate the effective dielectric constant of the 
random medium to the response kernels K(12) and L(12). 

4. THE EFFECTIVE DIELECTRIC CONSTANT 

Since L(12) is asymptotic to -T1(12 ) at long range, we can write 

L(12) = I_o(12 ) - T,(12) (22) 

where Lo(12 ) is a short-ranged kernel. The range of Lo(12 ) may be expected 
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to be of the same order of magnitude as the correlation lengths associated 
with the fluctuations in the random mediuml Equation (21) can hence be 
written as 

(E(1)> = f d ( 2 )  1_0(12)" (F(2))  (23) 

We now restrict attention to external fields that vary slowly with 
position in comparison to the characteristic correlation lengths of the 
medium. Then it is clear that (E(1)> and (F(1)> will also be slowly varying, 
so that (F(2)) in Eq. (23) can be evaluated at the point r 2 = rt and taken 
outside the integral. This yields 

<E(1)>=[fd(2)Lo(12)]" <F(1)> (24) 

By virtue of the assumed statistical homogeneity and isotropy, fd(2)1_002) 
must be independent of r 1 and proportional to U. Equation (24) therefore 
reduces to 

(E(1))  = ~b(F(1)) (25) 

where 
1 f d ( 2 )  U:  10(12 ) (26) 

The effective dielectric constant c* of the random medium may be 
introduced by the relation @(1)E(1)) = e*(E(1)), which is equivalent to 

C *  - -  C 0 

< F ( 1 ) ) -  4~r% <E(1)) (27) 

Comparing Eqs. (25) and (27), we see that � 9  4~rc0/(c*-c0), which 
combines with Eq. (26) to yield c* in terms of L0(12 ). It is desirable, 
however, to express c* directly in terms of L(12). This is easily done using 
Eq. (22) and the fact (25) that U :T1(12 ) = -4~r8(12). We thereby obtain 

4--~ c * + 2 %  -- 3 (28) 

which is our final expression for c* in terms of the inverse kernel !_(12). 
When % = 1, Eq. (28) becomes identical in form to an expression previ- 
ously derived for the dielectric constant of a molecular fluid. (18) 

Our next task is to express c* in terms of K(12). This may be done by 
the following procedure. (2~ We first combine Eqs. (18) and (27) to obtain 

Comparison with Eq. (20) now shows that 1_(12) is macroscopically equiva- 
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lent (i.e., equivalent for slowly varying test functions) to the kernel 

4 ~re 0 
- 8(12)13 - T1(12 ) (30) L'm(12) r -- ,~ 

Therefore K(12) will be macroscopically equivalent to the inverse of L m (12), 
call it Kin(12 ). Using the results of Section 2, one readily finds that 

% ( , . _ % ) 2  
Km(12) ____- ( ,*  - %)(2,* + %) 8(12)0 + To(12 ) (31) 

12rr%e* ~- 4rr% 

It then follows that 

f d ( 2 )  O : Km(12 ) = ('* - '~ + ,o) (32) 
4 ~7, 0 tE * 

where we have made use of the fact (25) that U : T0(12 ) = 0. But since K(12) 
is macroscopically equivalent to Kin(12 ), we may rewrite Eq. (32) as 

(,* - , 0 ) ( 2 , *  + ,o)  
= f a ( 2 )  u : K(12) (33) 

4~r,0,, 

which is our final formula for ,* in terms of K(12). When % = 1, Eq. (33) 
becomes identical in form to the well-known Onsager-Kirkwood expres- 
sion for the dielectric constant of a molecular fluid. (2o In contrast to Eq. 
(28), which is implicit in the earlier work of Brown, (t'2) Eq. (33) appears to 
be new to the random medium context. 

Equations (28) and (33) are rigorous, but to be useful they require 
expressions for K(12) and L(12) in terms of the correlations that exist in the 
random medium. We shall pursue the development of series representations 
for K(12) and L(12) below. First, however, we pause in the next section to 
consider some pitfalls related to the preceding development. Readers not 
interested in how the development might have gone astray may proceed 
directly to Section 6 without loss of continuity. 

5. PITFALLS 

In this section we discuss some of the subtleties and pitfalls with which 
it is advisable to be familiar before attempting a serious study of the 
effective parameters of random media. Most of these pitfalls are related, in 
one way or another, to the long-range nature of the response kernels. They 
are therefore particularly hazardous in contexts (e.g., heat conduction) 
where the governing equations are traditionally thought of in purely local 
terms and the underlying long-range effects receive little or no emphasis. 
Workers in such areas are often lulled into a false sense of local behavior 
which can be very dangerous. The danger is aggravated by the fact that in 
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many treatments the response kernels appear only implicitly, in the form of 
infinite series such as those considered in Section 6 below. One is then 
liable to be misled by the fact that the first few terms in the most common 
series for K(12) [see Eq. (56) and the subsequent discussion] are short 
ranged. This unfortunate circumstance has been a major impediment to the 
crucial realization that long-range effects are present. 

5.1, Ambiguity of the Dipole Tensor 

Perhaps the simplest pitfall is the ambiguity in the tensor VVIr1-1, 
which was discussed in Section 2. Although this issue and its proper 
treatment are well understood, one still occasionally encounters a develop- 
ment in which VV[r]- ~ is treated as well defined with no special comment. 
In such cases care is needed to determine whether VV]r] -1 is being 
consistently identified with a single T0(r), and if so what the value of 0 is. 
The two most common values are 0 = 1 and 0 = 0. The choice 0 = 1 is 
often implicitly adopted in the course of formally differentiating under the 
integral sign or integrating by parts, for as a rule it is found that the 
resulting equations become correct if all factors of 7Vlr[ -1 that thereby 
arise are interpreted as Tl(r ). On the other hand, authors who are attuned 
to improper integrals frequently think of such integrals as Cauchy principal 
values, and they therefore tend to interpret 771r  1- l as T0(r ). 

5.2. Inversion of Singular Kernels 

As was noted in Section 2, the kernels Tl(r ) and T 2 ( r  ) are singular 
and cannot be inverted. Notice that T 2 ( r  ) = Tl(r ) + 4TrS(r)U, so that 
T 2(r ) can effectively appear even in treatments based upon the use of 
Tl(r ). And of course any kernel that can be expressed as the convolution of 
another kernel with Tl(r ) or T 2(r ) will also be singular. The fact that such 
kernels cannot be inverted is sometimes lost sight of, and the use of the 
resulting nonexistent inverses can then lead to incorrect or meaningless 
expressions.(32,33) 

5.3. Shape Dependence and Infinite-System Ambiguities 

The present development is based upon consideration of an infinite 
sample. Alternatively, one can formulate tile theory for a sample contained 
in a finite volume V, of some definite convenient shape, subjected to an 
external field E0(r ) whose sources lie outside of V. In this way one can 
derive expressions for E* in terms of integrals of the finite-system response 
kernel Kv(12 ) over the volume V. For example, consideration of an 
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ellipsoidal sample suspended in vacuum (% = 1) leads to the formula 
3 

e * -  1 _ 4~r ( d 
~2 1 + ~-*-2_ 1)Dk V J v  (1)d(2) U ' Kv(12 ) (34) 

k = l  

where the D k are the depolarizing factors for the ellipsoid, (34) which are 
known functions of the ratios of the principal axes. Such expressions are 
perfectly valid, provided that a definite sample shape is selected and 
consistently adhered to throughout the development, but they are of limited 
utility. The reason is that the integrals therein depend on the shape of V, so 
that the form of the expression for e* is different for different sample 
shapes. These features are clearly evident in Eq. (34), the left member of 
which depends on the shape of the ellipsoid through the D k. The integral in 
the right member must therefore exhibit the same shape dependence to 
maintain the equality. This situation is entirely analogous to that encoun- 
tered in the older theories of molecular dielectrics. One might naively hope 
to eliminate the shape dependence by taking the limit V ~  ee, but the shape 
dependence unfortunately persists in this limit. This means that, in some 
respects at least, the case of an infinite system is ambiguous. That is, it is 
not enough to specify that the system is infinite; one must also say what 
shape the infinite system is. The need to evaluate such shape-dependent 
expressions in formulations of the type mentioned is a severe obstacle in 
any attempt to actually compute numerical results from the theory. Just as 
in the molecular theory, (18~ shape-dependent expressions can be avoided by 
appropriate introduction of the inverse response kernel 1(12). A satisfactory 
formulation for finite systems then results, and the limit V ~  oe can be 
uneventfully taken if desired. The resulting expression for e* is just Eq. (28). 

The preceding discussion points up two related pitfalls: (a) A naive 
formulation for finite systems leads to expressions such as Eq. (34) which 
depend on the shape of the sample volume V, even in the limit V ~ oe; and 
(b) The case of an infinite system is in some respects ambiguous. Nothing 
further need be said about (a), but (b) raises the question of how properly 
to deal with an infinite system in such a way that ambiguous expressions do 
not arise in the theory. The key to resolving this question is the realization 
that ambiguous expressions arise only when long-range quantities such as 
K(12) are integrated over all space with no tempering at infinity. But in the 
present context, K(12) is inherently tempered by E0(2 ) [see Eq. (19)], so that 
ambiguity arises only when E0(r ) does not vanish as Irl ~ oe, i.e., when Eo(r ) 
has sources at infinity. Such a situation occurs, in particular, when Eo(r ) is 
considered to be uniform. Formally, Eq. (19) then becomes 

1 [fe(2)K(12)].Eo (35) 
( v )  = ,o 

But this equation is meaningless because the integral in square brackets 
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does not have a unique value. This integral should, of course, be defined as 
the limit of fvd(2)K(12) as V ~  oc, but the limit depends on the shape of V 
and is therefore ambiguous. The shape dependence is a consequence of the 
fact that K(12) is long ranged. The integral in square brackets in Eq. (35) is 
a typical example of the "conditionally convergent" integrals that often 
arise when sufficient caution is not exercised in the formulation of the 
theory. 

We therefore see that the situation of an infinite system in a uniform 
fieM is inherently ambiguous and should not be used as a basis for theoreti- 
cal developments (cf. Felderhof(24)). Thus, contrary to what one might 
naively have expected, the assumption of a uniform field is not an advanta- 
geous simplification but rather a severe and even fatal complication. The 
ambiguity can also be appreciated from a slightly different point of view. 
Consider again a dielectric ellipsoid of volume V suspended in a uniform 
external field E 0. The mean Maxwell field (E)  inside the ellipsoid is then 
also uniform with a value that depends on the shape of the ellipsoid 
through the depolarizing factors D k.(34) In the limit V ~  ~ one obtains an 
infinite sample in a uniform field, but if only E 0 is given one does not know 
(E)  (and vice versa). One might hope that (E)  could be unambiguously 
inferred from E 0 via the well-known relation (34) 

e*(E(1)) = E0(1 ) (36) 

for slowly varying fields in an infinite system. However, this relation is 
derived under the assumption that the fields vanish at infinity, and it 
therefore does not apply when they are uniform. 

Once the nature of the ambiguity is understood, it becomes clear that 
all such difficulties are avoided simply by restricting attention to situations 
in which there are no sources at infinity, so that E0(r ) ~ 0 as [r[ ~ or. (A 
similar approach has been used for molecular dielectrics by Hoye and 
Stell (35) in their Appendix D.) With this restriction, the case of an infinite 
system becomes perfectly well defined and one can exploit the convenience 
it affords. This is the approach taken in the present work. It has the 
advantage that ambiguous or "conditionally convergent', integrals never 
arise, so they need not be interpreted or dealt with. It also avoids any 
considerations of the transition from finite to infinite volume. 

Of course, a nonuniform E0(1 ) entails a nonuniform (E(1)), but this 
presents no problems. It does not violate the assumed statistical homogene- 
ity because this assumption applies only to the material properties of the 
medium, in particular e(1), and not to the fields. 

5.4. Nonuniqueness of the Response Kernels 

A potential source of confusion and error is the fact that the response 
kernels •(12), r(12), K(12), and I_(12) are not uniquely determined by the 
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response equations (15), (17), (19), and (20) in which they appear. The 
origin of this nonuniqueness is Eq. (3), which shows that the long-ranged 
kernel TI(12 ) has the same effect on an irrotational function as the 
short-ranged kernel -4~r6(12)U. Since E0(1 ) and E(1) are irrotational, Eq. 
(3) can be used to rewrite the response equations in various alternative 
forms which lead to different identifications of the response kernels. For 
this purpose it is convenient to use an equivalent form of Eq. (3); namely, if 
G(1) is irrotational then 

fd(2) T_2(12 ) �9 G(2) = 0 (37) 

Equation (17), for example, can therefore be rewritten as 

F(I) = 1 f d ( 2 )  [~(12) + ~T 2(12)]. E0(2 ) (38) 
% 

where ~ is an arbitrary constant. Thus the validity of Eq. (17) is invariant to 
the replacement of x(12) by ~(12) + ~T 2(12 ). Similarly, the validity of Eq. 
(15) is invariant to the replacement of ~(12) by 2k(12) + ~T 2(12)/c'(2 ). One 
therefore has choices for the response kernels other than those resulting 
from Eq. (16); i.e., the response kernels are nonunique. However, the 
response kernels cannot be chosen independently of one another, for 1r 
is required to be the unique inverse of ~k(12), and 1(12) is defined as the 
unique inverse of K(12)= (~(12)). A definite choice of either ~(12) or 
~(12) therefore uniquely determines the other three kernels as well. It is 
convenient to regard 1~(12) as the fundamental response kernel from which 
the others follow. The nonuniqueness can then be associated with ~(12), or 
more precisely with the fact that there exist different possible identifications 
of ~(12) that preserve the validity of Eq. (15). 

It is essential to realize that the different possible choices for )~(12) 
have different asymptotic forms at long range (i.e., different coefficients of 
T 0. Corresponding differences in the asymptotic behavior of 1r K(12), 
and k(12) then result. In particular, ~(12) and I_(12) are simply asymptotic 
to -T1(12 ) only for the choice of Eq. (16), upon which the present 
development is based. It is this simple asymptotic form that favorably 
distinguishes this particular choice, for the asymptotic forms of 2,(12) and 
L(12) are then independent of the random medium and its statistical 
properties. Other choices would introduce a dependence on c(2) into the 
asymptotic form of )~(12), and a corresponding dependence on e* into the 
asymptotic form of L(12). 

Because of these differences in asymptotic behavior, the expressions 
for c* in terms of k(12) and K(12) will also be different in form for different 
choices of ~(12), and only when Eq. (16) is adopted will Eqs. (28) and (33) 
obtain. That is, the validi~ of Eqs. (28) and (33)for r depends specifically on 
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the particular choice of Eq. (16) for the random inverse response kernel ~(12). 
In the present development, of course, this choice has been clearly made 
and consistently adhered to, but it is important to realize that other 
possibilities exist and to be aware of their consequences. 

5.5. Incorrect Representations of the External Field 

In the present development, the external electric field E0(1 ) serves as 
the source of the total electric field E(1). This is reflected, in particular, in 
the presence of the E 0 term in the fundamental Eq. (12). In contrast, in 
contexts other than dielectric polarization (such as heat conduction) it has 
not been customary to explicitly introduce an external source term analo- 
gous to E 0. Instead, most workers have in effect regarded the mean field 
(E~ as the source, under the supposition that (E)  can be specified at will 
by proper choice of the boundary conditions. This can indeed be done in a 
finite sample of volume V, but difficulties arise in the limit V ~  oo. One 
source of trouble is that (E)  is commonly taken to be uniform, which gives 
rise to the problems already discussed in Section 5.3 above. But even if (E)  
is nonuniform and vanishes at infinity, the problem remains of how to 
properly introduce it as a source term into the relevant integral equations 
such as Eq. (12). This is easily done if one starts with a formulation in terms 
of E 0, for if the fields vary slowly and vanish at infinity (and if e* in fact 
exists) then the simple relation (36) obtains. Thus the correct introduction 
of <E> as a source term consists in the replacement of E0/% by (c*/%)(E) 
in any of the equations of the present development. However, in the 
absence of E 0 it is unclear how to proceed, and as a result many authors 
have incorrectly introduced <E> into the integral equations of the the- 
ory. (4'6'12'13) In particular, it is not uncommon to encounter Eq. (12) with 
E0/e 0 simply replaced by (E),  the factor of (e*/e0) being erroneously 
omitted.(6'12'13) 

The explicit presence of the external field E 0 is seen to be distinctly 
advantageous, as it eliminates any uncertainty about the proper form of the 
source terms in the various integral equations. [Of course, it is eventually 
necessary to eliminate E0 in favor of (E),  but this is easily done at an 
appropriate stage in the development, either by the procedure of Section 3 
or by use of Eq. (36) as discussed above.] From this point of view, a 
dielectric formulation of the random medium problem is rather easier to 
treat correctly than an equivalent formulation in terms of, say, heat 
conduction, because the external field E 0 is naturally present in the descrip- 
tion from the beginning. (A corollary is that in contexts where an external 
field does not naturally appear, it may be useful to introduce one and then 
eliminate it later.) Moreover, a dielectric formulation has the further 
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advantage that long-range effects, and the shape dependence to which they 
give rise in a finite sample, are more familiar and hence less likely to be 
dealt with incorrectly. 

5.6. Improper Manipulations Involving Long-Ranged Kernels 

As discussed above, when E0(1 ) varies slowly with position it can be 
eliminated in favor of (E(1)) by use of Eq. (36). If this is done in Eq. (19), 
one obtains 

(F(1)) -- ~ f d ( 2 )  K(12) �9 (E(2)) (39) 

which is a relation between (F)  and (E). One might be tempted to think of 
it as the statistically derived constitutive relation, from which c* could be 
inferred simply by comparison with Eq. (27). Unfortunately, the long-range 
nature of K(12) invalidates the simple manipulations upon which this plan 
depends. It is instructive to consider these manipulations in some detail. 
We first combine Eqs. (27) and (39) to obtain 

E *  - -  (o 
(E(1)) = f d ( 2 )  K(12) �9 (E(2)) (40) 

Therefore K(12) has a local effect on (E(2)), in spite of the fact that it is 
long ranged. The reason is that K(12) is asymptotically proportional to 
T1(12 ) at long range, and the local behavior then results from Eq. (3). 
However, an insufficient awareness of the underlying long-range effects 
might lead one to erroneously conclude from Eq. (40) that K(12) is a local 
kernel, and that (E(2)) could therefore be evaluated at the point r 2 --- r I and 
taken outside the integral. One would thereby obtain 

e* - e o K(12) ] <E(1)> =[fd(2)  �9 <E(1)> (41) 

which of course is meaningless since it contains the same ambiguous 
integral encountered in Section 5.3. However, if one were unaware of this 
difficulty he would go on to infer from Eq. (41) that fd(2)K(12) is 
proportional to U and hence is equal to (1/3)[fd(2)U : K(12)]U. Equation 
(41) would then reduce to the incorrect expression 

e* - 'o _ 1 A ( d ( 2 )  U K(12) (42) 
4~re* 3 

which is particularly dangerous because the integral therein is no longer 
ambiguous. The correct expression for e* in terms of U : K(12) is of course 
Eq. (33). The error arises because the simple manipulations leading to Eq. 
(42), which would have been perfectly legitimate if K(12) had been short 
ranged, are invalid for long-ranged kernels. 
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The pitfalls discussed above, either singly or more often in various 
combinations, have given rise to many errors in the literature on random 
media. It is therefore prudent to approach this literature with a great deal 
of caution. The presence of error is frequently indicated by the appearance 
of meaningless expressions, such as fd(2)K(12) or the inverse of Tl(12 ). 
Such expressions may appear in a variety of different forms and are not 
always obvious on casual inspection. Their recognition is complicated by 
the fact that in many treatments the result for ~* is generated directly in 
series form. In such cases it may be helpful to compare with the series 
expansions for K(12) and L(12) developed in the next section, of which 
many of the series in the literature are special cases. Another complication 
is that the long-range quantity T0(12), from which most of the difficulties 
arise, frequently does not appear explicitly in the formulas. However, its 
presence can often be revealed by use of the identity 

f d ( 2 )  7~lrl-  r2l- 'Vz . f(2) = f d(2) T,(12) . f(2 ) (43) 

where 7 i = O/0ri. It should also be emphasized that the absence of 
meaningless expressions in the final results is not necessarily a good omen, 
as the incorrect Eq. (42) illustrates. 

Finally, we note that there has been a growing interest in applying 
formal operator techniques, of the type used in scattering theory and 
elsewhere, to the theory of random media. (3'2z36 38~ These techniques afford 
a great deal of convenience, compactness, and elegance, and we shall utilize 
them to some degree in developing series expansions for K(12) and [_(12) in 
the next section. However, a note of caution is in order. By their very 
compactness, these operator techniques may increase the danger of some of 
the pitfalls discussed above. In performing the operator algebra manipula- 
tions, there is a natural tendency to lose sight of the mathematical character 
of the kernels which the operators represent. Attention is distracted, in 
particular, from the fact that some of these operators may be nonunique, 
singular, or long ranged. [For example, Eq. (40) can be written in an 
obvious operator notation as [ (E*-%) /4~c*] (E)=  K ( E ) ,  which might 
lead one to thoughtlessly identify (e* - %)/4~e* with K. This identification 
is of course impermissible, for it equates an isotropic short-ranged operator 
to an anisotropic long-ranged one.] A keen awareness of the various pitfalls 
is therefore especially important in developments based on formal operator 
techniques. 

6. SERIES  E X P A N S I O N S  

We now proceed to develop series representations for the kernels K(12) 
and k(12) in terms of spatial correlations in the random field ~(1). The 
resulting series then immediately provide series expansions for e* via Eqs. 



66 Ramshaw 

(28) and (33). The development is facilitated by the introduction of a 
compact operator notation, so that function arguments, dot products, 
convolutions, etc. need not be written out explicitly. The operator corre- 
sponding to a kernel A(12) will simply be denoted by A. Operator multipli- 
cation corresponds to a combined dot product and convolution. That is, the 
product AB of two operators A and B is the operator corresponding to 
fd(3)A(13) �9 B(32). The unit operator corresponds to the kernel 8(12)0 and 
is denoted by I. In operator notation, the relation between K(12) and k(12) 
becomes simply KL = I, or L = K-~.  Similarly, the relation between the 
random kernels r(12) and /t(12) is expressed by the operator equation 
xX = I, or x = X-I. 

The series expansions to be considered here are based on the separa- 
tions 

= Xo + ~' (44)  

X -- X0 + X' (45) 

where XoXo -- I, and )t o is to be chosen in such a way that X~ -1 = x0 can be 
obtained explicitly in closed form. A major point of interest is that this 
constraint is remarkably unrestrictive. A wide variety of choices for X o is 
possible, and this lends a great deal of flexibility to the series expansions for 
K and L and to the expressions for e* that result from their use. 

The basic series expansion for K is obtained simply by ensemble 
averaging the series for x in powers of X'. The latter is easily generated by 
expanding the inverse operator in the relation K = (I  + ~0X')- 1~ o. The result 
is 

= • ( -  l)k(XOX')ktr (46) 
k = O  

from which it follows that 

K = ~ ( -  1)k((X0X')kX0) (47) 
k = 0  

The series expansions of K to be considered here are all special cases of Eq. 
(47). 

Generation of the corresponding series expansion for L in powers of X' 
is less straightforward, because L ~ @5. Of course, this expansion can 
always be obtained by manual term-by-term inversion of Eq. (47), but this 
is inconvenient and cumbersome. Fortunately a more elegant approach is 
available, in which the series for L in powers of X' may be directly 
generated by the introduction of an appropriate projection operator. (22'37) 
When X 0 is nonrandom, this expansion takes the form 

L=Xo+((I+X'I%P)-'X')=(X)+ ~ (-1)k((X'xoP)kX ') (48) 
k = l  
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where the projection operator P is defined by 

P f  = f - ( f )  (49) 

for an arbitrary random function f. In contrast to a common careless 
statement, we note that the operator PA is not simply equal to A - (A),  for 
P A f  = A f -  (A  f ) ,  and this does not reduce to (A - ( A ) ) f  for random f. 
However, it is clear that PA may be replaced by A - (A)  when there is no 
further randomness to the right of the operator A, and this fact may be 
used to expand the terms in Eq. (48) by repeated elimination of the 
rightmost factor of P. 

The corresponding expansion when )t o is random is unfortunately a bit 
more cluttered, but it may be derived by a straightforward generalization of 
the procedure O7~ used to obtain Eq. (48). The result is 

L = L o + Lo@o(I + X'Qxo)-')t'x0)L 0 

= C o + ~ ( -  1)kLo(xo(2t'QKo)k2t'xo)Lo (50) 
k=O 

where L o = @0)-1, and the projection operator Q is defined by 

Qf = f - xoLo( f )  (51) 

Again, of course, the operator QA differs from A -  KoLo(A), but the 
former may be replaced by the latter when there is no further randomness 
to the right of the operator A. One readily verifies that Eq. (50) properly 
reduces to Eq. (48) when )t o is nonrandom, for L 0 then reduces to )to, 
adjacent factors of L o and x 0 annihilate each other, Q reduces to P, and P 
commutes with x 0. 

Equipped with the above general series expansions for K and L, we 
now proceed to consider different possible choices for X0. Additional 
flexibility is obtained by rewriting Eq. (16) in the equivalent form 

where 

2,(12)  - 1 3 ( 1 2 ) U  - T o ( 1 2  ) 
Xo(1) 

(52) 

E(1) - E 0 ) (53) 
3_,,, (1 - u (2 + 0),o Xo(1) 

and 0 is an arbitrary parameter at our disposal. 3 In operator notation, Eq. 
(46) becomes simply 

X = Xo ~ - T o (54) 

3 The parameter  0 was introduced into dielectric theory by Hoye and Stell, (35~ although they 
did not  explicitly incorporate it into the dipole tensor as we do here. 
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where Xo is the operator corresponding to the kernel Xo(1)d(12)U. We now 
observe that both terms in Eq. (52) or (54) can separately be inverted 
explicitly, so that either term can be identified with X o. We therefore have a 
choice of two types of expansions. Each choice actually represents a 
two-parameter family, since the free parameters E o and 0 may be selected at 
our convenience. 

The series expansions that result from the choice X0 = X0 -1 will be 
referred to as expansions of the first kind. With this choice we have •0 = X0 
and ~' = - T 0, so that Eq. (47) for K becomes 

K = ( ( x 0 r 0 ) % )  (55) 
k = 0  

Conversion of Eq. (55) back into kernel form yields 

K(12) = (X0(1))8(lZ)U + (Xo(1)X0(2))T0(12) 

+ fd(3)(x0(1)x0(2)x0(3))T0(13). T0(32) + . . .  (56) 

We remark parenthetically that Eq. (56), with 0 = 1, is the expansion for 
K(12) that results from the common pedestrian procedure of combining 
Eqs. (13) and (14), solving the resulting integral equation for F(1) by 
iteration, and averaging the result. Substitution of Eq. (56) into Eq. (33) 
yields an expression for c* in terms of spatial correlations in the random 
function X0(1). In general (X0(1)) ~ 0, so Eq. (56) is not a true expansion in 
fluctuations. However, one can choose % and 0 so that (X0(1))=0 
[although this will in general require knowledge of the single-point proba- 
bility distribution of e(1)], and then one has a true fluctuation expansion. In 
particular, the choice 0 = 1 makes Xo(1) proportional to c ( 1 ) -  %, and 
setting Co = (~(1)) then yields an expansion in correlations of the dielectric 
constant fluctuations e ( 1 ) -  (E(1)). These choices for e 0 and 0 have fre- 
quently been adopted at the outset in previous work. 

Notice that when (X0(1)) = 0, the first three terms in Eq. (56) are short 
ranged! In the absence of other information, one might erroneously con- 
clude on this basis that K(12) itself is short ranged, whereupon several of 
the pitfalls discussed in Section 5 would rapidly befall him. Upon examina- 
tion, however, the next term in Eq. (56) (which involves four-point correla- 
tions) is found to be long ranged even when (x0(l)) = 0. 

Although duly noted on numerous other occasions in the litera- 
ture, it is worthwhile to observe that the two-point correlation function 
(X0(1)X0(2)) contributes to c* in only a trivial way that does not involve its 
full dependence on ]r 2 - r~l. This follows from the fact that the contribution 
of the second term in Eq. (56) to the right member of Eq. (33) is simply 
-4~r0([X(1)]2), which involves only single-point statistical information. 
This contribution can even be made to vanish entirely by taking 0 = 0. 
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Setting ?t o = X0- I makes ?t0 random, so the expansions of the first kind 
for L are special cases of Eq. (50). Since x o = X0, L0--(X0> - I =  ( l / f l ) I ,  
where fl = (X0(1)) is simply a constant. Equation (50) therefore becomes 

L = - ~ I -  f12 k=O ~ (x~176176176 (57) 

or, in kernel form, 

1 8 ( 1 2 ) O -  1 k(12) = --~ - ~  (X0 (1)Xo (2)>T0 (12) 

f121 fd(3) [ (Xe (1)X0 (2)X0 (3)) _ fll (Xe(1)X0(3)>(Xe(3)Xo(2)> 1 

x T0(13 ) .T0(32) + - - .  (58) 

Substitution of Eq. (58) into Eq. (28) yields a second expression for e* in 
terms of spatial correlations of X0(1). The quantity fl is somewhat analo- 
gous to the polarizability in the dielectric theory of nonpolar molecular 
fluids. Successive terms in Eq. (58) are seen to be of successively higher 
orders in fl, the nth term being of order fl "-2. The expression for c* 
obtained by combining Eqs. (28) and (58) therefore has somewhat the 
character of a polarizability expansion. In this connection, it is noteworthy 
that if 0 = 0, the second term in Eq. (58) makes no contribution to Eq. (28). 
This choice consequently eliminates the term of order fl 2 in the expansion 
of the generalized Clausius-Mossotti function (3/4~r)[(c* - %)/(c* + 2%)]. 
The first correction to the term of order B is then the term of order f13, just 
as in the corresponding expansion for nonpolar molecules. (26) 

Series expansions resulting from the choice ?t0 = - T o  will be called 
expansions of the second kind. With this choice we have ?t '= X0 -1 and 
x 0 = (3/47r)2[(0 - 1)(0 + 2 ) ] - 1 T _ 1 _ 0  . The choices 0 = 1 and 0 = - 2  are of 
course not available now. The present ?to is nonrandom, so the appropriate 
expansion for L is Eq, (48). From the above treatment of expansions of the 
first kind, it should now be clear how to specialize Eqs. (47) and (48) for K 
and L to the present situation. The details will therefore be omitted. The 
resulting series for K(12) and k(12) involve correlations of the random 
function tP0(1 ) =-- l/x0(1). Substitution of the series for K(12) into Eq. (33) 
yields a series expansion for e* in terms of these same correlations, and a 
second such series for c* is obtained by substituting the series for k(12) into 
Eq. (28). If desired, attention may be restricted to fluctuation expansions 
for c* by choosing the free parameters c o and 0 so that (~0(1)) = 0. For a 
given value of %, this requires that 

( c ( 1 )  + 2c~ ) (59) 
0 = c ( l ) -  c0 
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This condition has the further consequence that k0 = (k), which intuitively 
seems desirable. 

We remark parenthetically that the terms in the series for L possess a 
cluster property that is lacking in the series for K. Early manifestations of 
this property are already evident in the contrast between Eqs. (56) and (58). 
This cluster property is a consequence of the projection operators in the 
series for L, and it plays a crucial role in determining that L is simply 
asymptotic to - T 1 at long range. These matters will not be discussed here, 
as they are rather intricate and bear only a peripheral relation to the 
present development. 

In summary, we have constructed two different types of series expan- 
sions for the response kernels K(12) and k(12), the expansions of the first 
and second kinds. Each of them can be used in conjunction with the exact 
Eqs. (28) and (33) for c*. We thereby obtain four distinct series expansions 
for E* in terms of the spatial correlations that characterize the random 
medium. Each of these four series in fact represents a two-parameter family 
of similar series, in which the free parameters % and 0 may be chosen in 
any desired manner. These parameters determine the form of the quantities 
X0(1) and ~0(1) whose spatial correlations appear, and the parameter 0 also 
determines which dipole tensor appears. The formulation as a whole is 
therefore possessed of considerable generality and flexibility, and encom- 
passes a wide variety of series representations for e*. 

7. NONPOLAR MOLECULES 

The preceding development derives considerable generality from the 
fact that the nature of the random medium has been left arbitrary. In this 
section we shall briefly illustrate the specialization to a particular random 
medium of interest, namely, a simple fluid composed of nonpolar mole- 
cules. The dielectric behavior of such fluids is of considerable interest in its 
own right, and it has received much study from the point of view of 
conventional statistical mechanics. (26-28) 

Since the present theory is a continuum theory, it is necessary to 
represent the molecules as small particles of continuous material sur- 
rounded by vacuum. This is perfectly permissible provided that the struc- 
ture and material properties of the particles are chosen so that they exhibit 
the same external electrostatic behavior as the molecules. In the simplest 
model of a nonpolar fluid, the electrostatic behavior of the molecules is 
completely characterized by an isotropic molecular polarizability a, and 
this is the molecular model we shall consider. We therefore need only 
ensure that our particles of continuous material have this same polarizabil- 
ity. This is easily accomplished by letting the particles be uniform spheres 
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of radius R and dielectric constant e., where (34) 

e , -  1 R 3 (60) 
c a + 2  = a  

For concreteness, R may be thought of as some suitable measure of the 
molecular radius, and the value of e~ is then determined as well. However, 
the formulation will not involve R and e~ separately; only the value of a 
matters. 

The next step is to determine the function e(1). Clearly e (1)=  1 + 
S ( 1 ) ( ~ -  1), where S(1) is unity if r 1 lies inside any of the particles and 
zero otherwise. It follows that 

e ( 1 ) - I  _ a S ( 1 )  (61) 
e ( 1 ) + 2  R 3 

We now observe that the integral of (3/4~rR 3)S(1) over an arbitrary region 
of space is simply the number of particles in that region. Thus (3/4~rR 3) 
S(1) can be identified with the particle number density p(1), so that Eq. 
(61) becomes 

4~r e(1) +-2 = aO(1) (62) 

This expresses the random function e(1) in terms of the random function 
0(1), so that correlations involving e(1) can be expressed in terms of 
correlations involving the more basic variable O(1). The latter are of course 
simply related to the familiar generic distribution functions. (26'3~'34) Equa- 
tion (62) shows that for spherical particles, the Clausius-Mossotti equation 
is exact in the random variables. Deviations from this equation are there- 
fore entirely due to the statistical averaging, which may be thought of as 
effecting a renormalization of the dielectric constant as a function of 
number density. 

Solving Eq. (62) for E(1), we find 

3 + 87rap(l) 
e(1) - 3 - 4~rao(1) (63) 

which combines with Eq. (53) to yield 

{ 3(1 - %) + 4~r(2 + %)~0(1) } 

Xe(1) = ~ 3 [ (1 _ O) + (2 + O~e-~] +4~[2( i -  _ - ~  ~2 + O)eo] aO(1) 

(64) 

With the use of this expression for X0(1), the various series of Section 6 
become series expansions for the dielectric constant of a nonpolar fluid in 
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terms of various density correlation functions. An extensive discussion of 
special cases would be inappropriate here, but it is worthwhile to briefly 
consider some simple examples of the expansions of the first kind. 

We first consider the case e 0 = 1 and 0 = 0, in which X0(1) reduces 
simply to ap(1). The expansion for e* obtained by combining Eqs. (28) and 
(58) then reduces to the well-known Kirkwood-Yvon expansion in powers 
of a. (26'34~ This expansion involves simple density correlations of the form 
<p(l)p(2) . . .  p(k)>. An alternative expansion for e* in terms of the same 
correlations, but involving the Onsager-Kirkwood function of e* instead of 
the Clausius-Mossotti function, is provided by Eqs. (33) and (56). These 
expansions are not fluctuation expansions because (O(1)> 4= 0. 

Expansions in density fluctuations, of the type considered by Bedeaux 
and Mazur (27~ and by Felderhof, (2s~ may be obtained by requiring % to 
satisfy the Clausius-Mossotti equation, 

4--~ ~ = a@(1)> (65) 

and setting 

(% - 1 ) 8z-a@(l)> (66) 0 = - 2  ~ = 3 

Equation (64) then reduces to 

9a[p(1)-(O(1)>] 
X0(1) = (3 + 8Tra<O(1)>)(3 - 4~ra<O(1))) (67) 

and the expansions of the first kind now become expansions in correlations 
of the density fluctuations p(1) - <p(1)>. The presence of a in the denomi- 
nator of Eq. (67) means that these expansions are no longer power series in 
a. The choice of Eqs. (65) and (66) for % and 0 has had the effect of 
resumming the polarizability expansions that were obtained by setting 
% --- 1 and 0 = 0. The resummation has effectively collected terms in such a 
way as to bring in the density fluctuations instead of the density itself. The 
power and convenience of the formulation is illustrated by the fact that this 
resummation has been very simply accomplished in a purely analytic 
manner, with no need to consider the detailed structure of the terms in the 
series. 

8. CONCLUDING REMARKS 

Let us briefly summarize what has been accomplished. Rigorous 
general expressions have been established for E* in terms of the response 
kernels K(12) and I_(12) for an infinite system. These expressions have been 
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used in conjunction with perturbation expansions to construct very general 
and flexible families of series expansions for e* in terms of statistical 
correlations in the random medium. Throughout the development, particu- 
lar attention has been paid to the careful treatment of long-range effects, so 
that shape-dependent or conditionally convergent expressions do not arise 
and therefore need not be interpreted or dealt with. 

We have not considered the problem of establishing rigorous upper 
and lower bounds for e* in terms of the statistical correlations that 
characterize the medium. It is hoped, however, that the series for e* 
developed here may prove useful in future work as a basis for the construc- 
tion of such bounds. 

As already mentioned, the present results also apply to other effective 
parameters of the same type, such as conductivities and diffusion constants. 
The procedures by which these results have been obtained, however, are of 
potentially wider interest, for it seems likely that other classes of effective 
parameters will be susceptible to entirely similar treatments. Indeed, the 
conceptual and procedural aspects of our development should carry over, 
in essentially their present form, to virtually any linear constitutive relation 
between forcelike and fluxlike vector or tensor fields. (Of course, the actual 
equations may be somewhat more complicated owing to the presence of 
additional tensor indices, etc., but this is a mere technical detail.) In this 
way, the distinctive advantages of the present development, in particular its 
flexibility and freedom from difficulties with long-range effects, may be 
realized in many other contexts as well. Two obvious examples, of some 
current interest, are the effective elastic constants and viscosities of random 
solid and liquid suspensions. 
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APPENDIX.  A S Y M P T O T I C  FORM OF L(12) 

The constitutive relation between (F(1)) and (E(1)) must be local in 
nature for an effective dielectric constant ~* to exist. ~8) It might then 
appear from Eq. (21) that if ~* exists, L(12) must be asymptotic to -T1(12 ) 
at long range. Unfortunately, this reasoning is invalidated by Eq. (3), which 
shows that the long-ranged kernel Tl(12 ) has a local effect on irrotational 



74 Ramshaw 

functions such as (E(1)). Thus the mere fact that an integral relation 
involving (E(I))  must reduce  to a local relation does not imply that the 
kernel therein is short ranged. Failure to appreciate this point can lead to 
serious error, as discussed in Section 5. 

The fact that 1(12) is asymptotic to -T1(12 ) therefore cannot be 
inferred from Eq. (21) and the existence of e* without further justification. 
The asymptotic behavior of l(12) could be directly investigated by examin- 
ing the terms in a series expansion of L(12) (see Section 6), taking into 
account the assumed short-ranged nature of the correlations in e(1). How- 
ever, such an analysis would be lengthy and intricate, and it is preferable 
for present purposes simply to adopt a slightly stronger assumption about 
the constitutive relation between (F(1)) and (E(1)). We shall assume that 
this relation remains local for transverse as well as longitudinal electric 
fields, i.e., even when E 0 and E are no longer required to be irrotational. 
The development of Section 3 can readily be extended to this more general 
situation. Since E 0 is an arbitrary external field, its curl can also be 
arbitrary. However, the curl of E must be specified to determine a unique 
solution. This is conveniently done by requiring Eq. (11) to remain valid; 
the curl of E is then simply proportional to that of E 0. The retention of Eq. 
(11) means that Eqs. (12)-(21) continue to apply as before. Now, however, 
neither (E(1)) nor (F(1)) is irrotational, so Eq. (3) becomes irrelevant to 
the relation between them. Thus one can now infer from Eq. (21) that k(12) 
must be asymptotic to -Tl (12  ) at long range, for otherwise (E(1)) would 
bear a nonlocal relation to (F(1)) contrary to assumption. 

Physically, the continued existence of a local relation between (F(1)) 
and (E(I))  for transverse as well as longitudinal electric fields is intuitively 
very plausible, if not obvious. In effect, it simply means that a local 
macroscopic constitutive law should hold in the presence of an arbitrary 
vector source function, not merely a scalar one. When E 0 and E are 
irrotational, it is really only the scalar function V.E 0 that serves as the 
source of the vector fields E and F. One is then in the rather incongruous 
position of calculating a vector response to what is in effect a scalar 
stimulus. This incongruity is removed by allowing E o and E to be rota- 
tional. However, the usual restriction to irrotational (longitudinal) electric 
fields has been retained everywhere except in this appendix, as it presents 
no serious difficulties in the main development. (It does, however, give rise 
to a potentially confusing nonuniqueness in the response kernels, as dis- 
cussed in Section 5.4.) 
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